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Abstract—Lossius et. al introduced the distance-based am-
plitude panning algorithm, or DBAP, to enable flexibility of
loudspeaker placement in artistic and scientific contexts. The
algorithm allows for arbitrary loudspeaker locations in a 2D
plane so that a virtual sound source may navigate the 2D space.
The gains for each speaker are calculated as a function of the
source’s distance to each loudspeaker, thus creating a sound field.
This gives the listener the impression of a source moving through
the field of loudspeakers. This paper introduces a heuristically
developed robust variation of DBAP that corrects for faulty
assumptions in the implementation of Lossius. Specifically, this
paper develops a method for working with sound sources outside
the field of loudspeakers in which the Lossius version produces
distorted aural impressions and wildly undulating amplitudes
caused by spatial discontinuities in the gains of the various
loudspeakers. In smoothing the spatial impression of the virtual
source, we are also able to eliminate the calculation of the convex
hull entirely, a necessary component of the original implemen-
tation. This significantly simplifies and reduces the calculations
required for any space in either two or three dimensions.

Index Terms—DBAP, audio spatialization, loudspeaker array

I. INTRODUCTION

Spatialized sound generally works from a set of loudspeak-
ers that are placed along the permiter of a ring (2D) or the
surface of a sphere (3D), evenly enclosing a listening area.
There are several well-known paradigms which use this loud-
speaker configuration, most notably vector-based amplitude
panning (VBAP) [1] and Ambisonics [2]. Few paradigms have
been developed for arbitrary placement of loudspeakers. Ville
Pulkki, who also created VBAP, developed multiple-direction
amplitude panning [3] and in 2009, Lossius, Baltazar, and de
la Hogue published the technique known as distance-based
amplitude panning (DBAP) [4] upon which the method in this
paper was developed. DBAP currently has implementations in
a number of computer music softwares such as Pd [5], Max
[6], Jamoma [7], and SuperCollider [8].

There are multiple aesthetic circumstances that would stand
to benefit from a DBAP-like paradigm of a flexible loud-
speaker layout. An algorithm which compensates for arbi-
trarily positioned loudspeakers would enable new aesthetic
experiences with spatialized sound, as well as improve the
physical layout of artistic installations which utilize spatial
sound. Without a flexible loudspeaker layout, loudspeakers for
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spatialized sound must be constrained to a ring or sphere. Any
alternative layout, say in an oval in a rectangular room, will
result in distortion of the sound field.

In addition, use of so-called flocking algorithms such as
Craig Reynolds’ Boids algorithm [9] are particularly well-
suited to a loudspeaker field since each agent in a flock
is given an (x,y) or (x,y,z) coordinate that can be mapped
into the “loudspeaker-space” without conversions or other
compensation.

II. DISTANCE-BASED AMPLITUDE PANNING

As noted, distance-based ampltude panning (DBAP) is a
sound spatialization paradigm which allows a virtual source
to be placed in a field of arbitararily placed loudspeakers
by calculating the gain of each loudspeaker as a function of
the distance to the virtual source. The gain, vi, for the ith
loudspeaker is:

vi =
kwi

dai
(1)
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and N is the number of loudspeakers, di is the distance from
the source to the ith loudspeaker, wi is a weighting paramter
for the ith loudspeaker typically set to 1, and a is a coefficient
calculated from a rolloff, R, in decibels. The variable k is a
coefficient that is a function of the position of the source and
all the speakers.

In two dimensions, the distance di between the virtual
source position, (xs, ys), and the position of the ith loud-
speaker, (xi, yi), is defined as:

di =
√

(xi − xs)2 + (yi − ys)2 + r2s (4)

where rs is a spatial blur factor.1

In doing so, DBAP enables spatial sound without the normal
constraints of loudspeaker placement at the expense of loss of
clarity in spatial position for sparsely populated loudspeaker

1In [4], Lossius constrains rs ≥ 0. This is unnecessary since rs is squared
in (4).



fields. Note that this approach is easily apadted to three
dimensions by adding the additional dimension in (4).

III. DIFFICULTIES WITH DBAP

Unfortuntely, DBAP as presented in [4] is error prone. It is
subject to spatial distortions in specific but relatively common
situations and configurations. The primary difficulty in the
implementation is how to approach the problem of a virtual
source positioned outside the field of loudspeakers.

In §2.6 of [4], the issue of sources outside the field of
speakers is presented. As the virtual source moves further
and further away, the difference between the gains for each
speaker is reduced (i.e. the ratio of each distance to every
other one approaches 1). This causes the source to appear to
move towards the center of the loudspeaker field as it fades. To
counteract this, the proposed solution is that the user project
the source that is outside the field onto the convex hull of
the loudspeaker field — where the projection is defined as
the point on the hull that is closest to the source outside
— and to use this projected point in subsequent calculations
of gain. This biases the gains of all the speakers in the
direction of the virtual source. Projecting would likewise give
the distance from the source to the convex hull and thus allow
the amplitudes to be scaled as a function of the distance from
the hull, typically using the inverse square law: 1/d2. In the
DBAP algorithm, this can be modified to 1/d2a to account
for the value a. The projection provides sufficient biasing of
the gains to maintain the spatial illusion, although depending
on the scaling function, significant distortions may occur. This
presents two difficulties: the calculation of the convex hull and
nonunique solutions for speaker gains when projecting onto
the convex hull.

A. Calculation of a Convex Hull

Algorithms for the calculation of a convex hull are well-
documented in computer science literature ( [10], [11], [12]).
However, adapting these algorithms for three-dimensions is not
trivial and often highly complex. Even after the calculation of a
convex hull it must be determined, at each time point, whether
or not the virtual source is contained within the hull. If it is
not contained within the convex hull, one must then calculate
the orthogonal projection of the source onto the hull which
generally involves solving a quadratic programming problem,
a resource-intensive process in two dimensions becoming even
more so in three dimensions [13].

B. Nonunique Solutions in the Projection Process

In cases where the projection is orthogonal to the perimeter
of the convex hull, this method of projection to create biasing
works adequately. However, when a projection is not orthogo-
nal, as in the case of the area beyond the vertices of the convex
hull where the projection is equal to one of the vertices, this
method fails to provide a unique solution. In particular, all
spatial differentiation is lost when different sources share the
same projection which occurs when the projection is the same
vertex (Fig. 1) and that vertex is then used in all subsequent

Fig. 1. Both s1 and s2 have the same projection, l1, and are the same
distance, d, from l1. This results in identical gain calculations and therefore,
no spatial differentiation. Note, though, that the distance to l2, l3, and l4 are
different. When using the original DBAP algorithm, the solutions for s1 and
s2 are identical and they are perceptably undifferentiable in space.

calculations of gain. In the most obvious case, if a source were
to move in a circle around a loudspeaker which is also a vertex
of the convex hull, there will be an area in which the source
will appear not to move, since the projected distance and the
point of projection are identical, even though the source’s
relative distance to every other speaker is different (Figure
1). This is illustrated in the middle plot of Figure 2, one can
see the flat spot in the third speaker just past the 2π mark
where the apparent movement of the source stops. Indeed, this
phenomenon occurs in every other place where the projection
is a vertex and the change in amplitude in those instances is
solely a function of the source’s increasing distance from the
hull. This can be seen with the fixed gain relationships between
all speakers. This effect is exacerbated as rs is reduced and
the rolloff R is decreased.

Additionally, a source crossing the threshold of the convex
hull can result in spatial discontinuities when utilizing this
method. By decreasing the gain of the virtual source by 1/(d+
1)2 where d is the distance from the source to the hull, the
power begins to undulate wildly. This is readily seen in the
bottom plot of Figure 2 at just before the 2π mark in the
center of the plot. Although this example is presented in two
dimensions, it is easy to see how it would apply in the same
way in three dimensions and therefore is unnecessary to work
out.

C. Absolute Distance-based Amplitude Panning

The authors in [14] found that the implementation of DBAP
as proposed in [4] produced insufficient clarity and that they



Fig. 2. Original DBAP. Rolloff = 6, rs = 1.073. Top: Plot of a 3x3 grid of
loudspeakers with a line showing the movement of the source from the center
of the field, extending in a spiral to a point outside the field. Middle: Gains of
the each speaker, color coded to correspond to the above figure. Note the flat
spot in the third speaker (speaker 2) where the percieved motion stalls due to
the nonunique projection. Bottom: The power of the entire field as a function
of the source’s angle.. Notice the undulating power as the source traverses
the boundary of the convex hull.

“discovered that especially the trajectory of moving sounds
... appears more clearly shaped or “sharper”, compared to the
unmodified DBAP algorithm.” Moreover, the authors required
the source to venture outside the loudspeaker field (convex
hull) and it appears that they naı̈vely implemented DBAP
without regard for what was noted in §4.6 of [4]. Thus, they
had a need to not only clarify the spatial trajectories but also
to solve the issue of a source outside the hull.

The authors instead propose to drop the constant intensity
condition in the original implementation. This resulted in
what they termed absolute distance-based amplitude panning,
or ADBAP. While the authors did not disclose the exact
calculation of gain they used, it can be inferred that they
simply set k = 1 for all source positions. This results in the
gain, vi, calculated as

vi =
wi

dai
(5)

While ADBAP provides superior imaging as noted by the
authors of [14], the total power from all loudspeakers in
constantly in flux. In a non-grid layout, ADBAP is prone to
large changes in power when a source passes through a cluster
of speakers. In the interest of completeness of comparison,
plots of the behavior of the ADBAP algorithm are presented in
Figure 4 alongside the original version as well as the modified
version here.

IV. NEW METHODS

In contrast to the original DBAP algorithm, the proposed
methods were developed less from a theoretical framework
and instead built upon an existing algorithm using an em-
pirical and heuristically driven process, although the constant
intensity condition remains. Thus the proposed solutions are
not guarenteed to be perfect but have, in practice, been shown
to provide a more convincing spatial impression given the
placement and movement of a virtual source.

A. Choice of the Loudspeaker Layout

To illustrate each difficulty and their proposed solutions, we
will analyze a simple 3x3 grid of 9 speakers (Figures 2, 3, and
4, top) where the convex hull is a square with a loudspeaker
at each vertex. Although unconventional, a grid of speakers is
the most ideal loudspeaker layout for all forms of DBAP since
it spatially samples the area of the loudspeaker field evenly in
all dimensions. The source will move outward in a spiral from
the origin clockwise until it is placed outside the convex hull
of loudspeakers. This allows us to examine the behavior of
the various algorithms when a source is moving inside the
hull as well as the behavior when it traverses the boundary
of the hull and moves outside it. This particular layout was
auditioned and proved to be the most useful with regard to
analysis and comparison.2

Also included are plots for a random layout of 10 loudspeak-
ers; this is presented in the Appendix. Finally, a set of plots is
provided on the authors website that illustrate DBAPs behavior
in a quadraphonic and 9-speaker circular (nonagon) layout. It
should be noted that DBAP, in any of its flavors, ought not
be the first choice for spatialzation algorithms in any regular
polygonal layout. DBAP is specifically designed for arbitrary
loudspeaker positions which would cause other algorithms,
notably VBAP or Ambisonics, to fail. An additional set of
figures for all plots are included which plot the SPL a listener
would experience as a function of both the angle of the virtual
source and the ”incoming angle” on a heatmap. That is, the x-
axis is the angle of the virtual source in radians and the y-axis
is the ”incoming angle” in radians where 0 is directly ahead
and π is directly behind a listener facing forward (0 radians).
These plots assume all speakers are facing the listener and the
SPL is scaled as 1/d2 for all speakers.3

B. Introduction of the variable p

In order to more adequately and smoothly scale the gains of
a source moving in and out of the field of speakers, we drop
the assumption that the powers must always equal 1 and that
when a source travels outside of the convex hull, the amplitude
of the source must be scaled. Instead we introduce the variable
p in the calculation of k where

2A note about the figures: The many different and overlapping gain lines
make the greyscale plots, which are necessary for publication, difficult to read.
Therefore, larger, color, and easier to read plots are available on the authors
website at http://jacobsundstrom.com/research/dbap.

3The SPL heatmaps are not included in the paper since they need to be
large in order to be adequately read and printing them in grayscale exacerbates
this problem.
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and

p =

{
q = max (ds)

drs
, if q < 1

1, otherwise
(7)

The variable p is the distance from a reference point
in the field to the most distant speaker, max(ds) =
max{ds1, ..., dsN}, divided by the distance between the ref-
erence and the virtual source, drs, clipped to 1. In general,
the reference point is best placed at the fields centroid, or
geometic center, but this can also be modulated, such as in
the case of tracking a listener moving through the field. In the
case of Figs. 2 and 3, the reference is placed at the origin.

This process effectively creates a circle around the reference
with a radius equal to the distance between the source and most
distant speaker, allowing for the power to equal 1 within this
circle and to fall off at the rolloff as the virtual source moves
away. In doing so, one can avoid calculation of the convex
hull entirely with limited spatial distortion. This is especially
valuable in a three-dimensional context where the calculation
of a convex hull is difficult and resource-consuming. In Section
V, however, the convex hull will continue to be used as concept
in order to more accurately describe the position of the virtual
source with respect to the loudspeakers.

C. Biasing of loudspeakers for virtual sources far outside the
hull

The above method using p creates satisfactory movement
from a source moving from within to outside of the convex
hull of loudspeakers. While this method works very well for
sources that maintain relative “closeness” to the loudspeaker
field, the problem described in §2.6 of [4] of the source
appearing to move toward the center as its distance grows
remains.

While in practice this was not generally found to be an
issue except in extreme circumstances, a method for biasing
is presented here and works adequately in situations where a
source cannot remain, for whatever reason, within a reasonable
distance from the loudspeaker field. A biasing parameter, bi
for the ith speaker, is added to (1) and (6) which become
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with bi defined as
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Fig. 3. New DBAP. Rolloff = 6, rs = 1.073. Top: Plot of a 3x3 grid of
loudspeakers with a line showing the movement of the source from the center
of the field, extending in a spiral to a point outside the field. Middle: Gains
of the each speaker, color coded to correspond to the above figure. Bottom:
The power of the entire field.

where m is the index of the median distanced loudspeaker
from the virtual source, max(d) is the loudspeaker furthest
from the virtual source so that max(d) = max{d1, ..., dN},
and ε is a small value to avoid 0 gain in the most distant
loudspeaker (typically set to rs/N ). Eq. (11) is the normalized
difference between the ith loudspeaker and the most distant
loudspeaker, squared, plus ε. One can see from (10) and (11)
that bi increases when di < dm and decreases to a minimum
of 1 when di > dm. In other words, loudspeakers closer to the
virtual source than mth loudspeaker have more “weight” than
do those which are further from the source than loudspeaker
m. This creates biasing without the need for projection and
the effect is exaggarated as di is larger or smaller than dm.
Note that bi is simply an additional weight parameter and can
often be calculated in place of wi if no weighting is used.

V. DISCUSSION

While not guaranteed to be perfect, the methods proposed
in this paper have been shown to provide convincing spatial-
ization of a virtual source in practice in a wide variety of of
loudspeaker layouts. These layouts further need not be, and
in fact ought not be, conventional loudspeaker layouts such
as 5.1, 7.1, 22.2, linear, rectangular, or circular layouts. There
are superior spatial paradigms for layouts such as these and
DBAP was never designed to exceed their performance in a
conventional layout.



Fig. 4. ADBAP. Rolloff = 6. Top: Plot of a 3x3 grid of loudspeakers with
a line showing the movement of the source from the center of the field,
extending in a spiral to a point outside the field. Middle: Gains of the each
speaker, color coded to correspond to the above figure. Bottom: The power
of the entire field as a function of the source’s angle.

Although the methods presented in §IV somewhat compli-
cate the caluation of gains when a virtual source is located
within the convex hull, they create a superior spatial impres-
sion in all configurations and circumstances than [4]. When a
source is located outside of the convex hull, the calculations
are simplified as there is no need to determine the orthogonal
projection. Likewise, there is no need to calculate the convex
hull at all since the gains of a source located outside the hull
are not a function of projection.

In the case of the spatial blur, rs, it was found that it is
best to set this as a scalar of the average distance between
the loudspeaker field centroid and each loudspeaker to enable
easy adaptation to different layouts. This creates similar per-
formance for different layouts while avoiding needless fiddling
with parameters. The variable rs then becomes

rs =

(∑N
i=1 dic
N

)
rscalar (12)

where dic is the distance from the centroid to the ith loud-
speaker. In practice, a value of 0.5 ≥ rscalar ≥ 0.2 performs
well in most situations. In Figures 2, 3, and 6–8, rscalar is set
to 0.2.

Remaining difficulties in DBAP-like paradigms are related
to the non-spherical emanation of sound from a traditional
loudspeaker. That is, a listener in the same position in the
loudspeaker field will necessarily have a different impression
depending on the orientation of the loudspeakers themselves.

Fig. 5. Speaker layout and movement of virtual source in the asymmetrical
field.

Fig. 6. Gain curves for the original DBAP algorithm with projection. Note
the very fast drop off in power once the virtual source exits the convex hull.

Solving this would require the development of new hardware
and is well beyond the scope of this article.

APPENDIX

Figures 6–8 show the performance of the original flavor of
DBAP, ADBAP, and the version presented in this paper in
an asymmetrical loudspeaker layout. The asymmetrical layout
(Figure 5) is ill-suited for analysis (hence its relegation to the
Appendix) but is quite possible in a performance or installation
context. For this reason, it is included here. The locations of
the loudspeakers are (-2, -1), (-2.5, 5), (1, -5), (-9.5, 9), (-1,
2), (9.5, -2), (-2, -10), (-3.5, 4.5), (4, 4), and (-9.5, -1.5). Note
that while the reference in calculations is set to (0, 0), the
actual centroid of the loudspeaker field is (-1.55, 0.5). Even
when the reference is not the centroid, the performance of the
DBAP version presented here is far superior to that presented
in [4].
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