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Abstract—Appeal of a musical composition is almost exclu-
sively subjective in that it is a combination of the tastes,
preferences, and history of an individual’s experiences. That
is, it is perceived and judged qualitatively in a different way
by different individuals. In this project we propose to build a
deep learning system which could take n different samples of a
jazz soloist - especially a variety of samples of specific ’styles’
- and generate sound using current input as well as feedback
and memory from the past samples. This generation can then be
judged by a ’human’ agent and the parameters of the neural
network could be adjusted accordingly to generate a fusion
music that is more closer and appealing to agent’s expectations.
Recurrent neural networks with Long Short Term Memory
(LSTMs) in particular have shown promise as a module that
can learn long songs sequences, and generate new compositions
based on the song’s harmonic structure and the feedback inherent
in the network. [5] We plan to explore the same through our
experiments.

I. INTRODUCTION

Music is an extraordinarily appealing auditory sensation
and the classification of musical style can be virtually infinite.
Since the dawn of music there has been a desire to fuse
musical styles in different ways, taking either essential or
superficial musical aspects of two or more compositions or
performers. Usually highly skilled musicians mix different
musical styles and compositions intuitively, creating a fusion
of style that they themselves are satisfied with. In this work,
we we try to combine different musical styles using deep
learning techniques. All of the current work is performed
using MIDI files but can be easily extended to incorporate
new formats. It should be noted, moreover, that musical style
is used in a broad sense in that individual players within a
single genre can have differing ”styles”.

The most straightforward way to generate music with with
a recurrent neural network (RNN) is to use the network as a
single step predictor. The network can be trained to predict
pitches at time t + 1 conditioned on pitches until time t
as inputs. After the training is completed, the network can
be seeded with random initial inputs (mostly from training
samples) to generate novel musical compositions using
subsequent output generated as input for next generation.
This note-by note approach was first examined by Bharucha
& Todd.[6], [7]

A generic feed-forward neural network would not be a good
fit at composing music using the technique described above.
The main reason behind this is the inability to memorize any
information about the past, thereby not being able to keep
track of variations & periodicity of a song’s feature across
time. In principle RNN does not suffer this limitation owing
to its recurrent connections and hidden activation layers
that may act memory elements, thereby exhibiting temporal
behaviour. However they do not perform well at the task of
modelling long duration temporal dynamics as studied by
Mozer.[8], with most likely cause being the the problem of
vanishing gradients associated with RNNs.[9]

So we explore the viability of using LSTM recurrent neural
networks for the same and experiment with fusion of different
musical styles. For this we extract features such as pitch,
rhythm and amplitude from midi files as described in II-B.
We then pre-process it and pass it to a neural network. We
train neural networks separately for each of the features. We
then generate the chosen features from target musical style
and then combine them to generate the final output result as
described in III-C. We then experiment with varying styles
and describe out results in latter sections.

II. DATASET

The most important considerations in choosing a dataset
were both musical and practical. Musically, the dataset had
to be interesting enough to captivate a listener. Practically,
the dataset had to be focused enough in order to train the
network in a timely fashion.

The choice to use MIDI files as our dataset file was one
of practical considerations. Sound files, such as MP3 and
WAV, capture the waveform of the sound and reproduce the
sound as it was recorded or synthesized. The waveform itself
contains no musically meaningful material without extensive
processing, beat tracking, onset detection, frequency analysis,
etc. Moreover, the analysis and extraction methods used on
signals is often imprecise and typically of an entire song with
all instruments playing simultaneously. Extracting a single
instrument from the texture and then accurately representing it
quantitatively is extraordinarily difficult and creates additional
difficulties of representing that information in a musically



meaningful fashion.

The decision to utilize MIDI led us to the Weimar Jazzomat
Database. It is one of the largest jazz midi datasets with
a corpus of 456 transcribed solos. Jazz as a genre offered
several advantages: specific soloists often have repeated
rhythmic and harmonic ideas that carry through different
songs, jazz standards offered a predictable harmonic palette
with which to use, and transcribed jazz solos are often
available for free. Additionally, the solos that were chosen
were those of monophonic instruments, like that of the
saxophone or trumpet and unlike that of the piano or guitar,
since those instruments play more than one note at a time.
This made the extraction of rhythmic data immensely easier
and less complicated.

Given the sheer number of soloists and the time constraints
of computing, we chose four players to analyze: Miles Davis,
John Coltrane, Ornette Coleman, and Charlie Parker. These
four giants of jazz were chosen for much the same reason,
the first being that they each had a large number of transcibed
solos in the database which allowed us to acquire the largest
datasets possible. Moreover, and perhaps more importantly,
they each have distinct and different styles and approaches
to playing. As opposed to two players who, while individual,
sound similar from a musical point of view, these players’
approach is clear in any of the features we chose to extract.

In order to facilitate the largest datasets and given the
stylistic choices specific to certain soloists, the files were
grouped by soloist. This allowed us to easily maintain
a repository for the harmonic, rhythmic, and dynamic
information of a given soloist. There are, of course, certain
caveats. Jazz standards, as a general principle, change key
throughout the course of the tune. Therefore, our recurrent
neural networks produce music that is never reminiscent
of a particular song but instead evocative of a musical
artist in general. The resultant music might be called more
free as a result. Additionally, the MIDI file format makes
parsing information on a temporal basis extremely difficult.
It was therefore not including in the the final form of the
pre-processed data.

A. Preprocessing

The biggest challenge of pre-processing was to somehow
maintain the musical integrity of the data we extracted. This
particular challenge proved to be too difficult to grapple
with in the time allotted and the choice was made to simple
normalize the data to render them song agnostic. That is,
the representation of the data was not dependent on either
the key, tempo, or other musical feature of the specific song.
Within the MIDI file itself, ’note’ events, such as note-on and
note-off govern the resulting sound and it is from these note
events that features were extracted.

B. Feature Engineering

Musical features are numerous and, depending on what
one is seeking, can take many forms. In our case, we sought
the most simple and basic traditional musical features: pitch,
rhythm, and dynamic (or amplitude). The structure of MIDI
files is such that these three features are prominently and
clearly encoded. In a sound file that represents a waveform,
extracting pitch information takes for form of FFT analysis
which is then translated to musical pitch. This processes is
difficult to manage and can introduce rounding errors, not to
mention the difficulties with extracting a single instrument
from a song texture. Moreover, re synthesizing such analysis
extracted features into a sound file is riddled with additional
challenges. Although one might be able to extract a pitch of an
instrument, this says nothing about envelope characteristics,
instrumental timbre, or accurate rhythmic representation.
Thus, analyzing a sound file did not meet the ease-of-use
criteria of our data.

MIDI files, on the other hand, contain in an easy to read
format all the salient features we wanted access to in addition
to being simple to parse. MIDI files are organized into
’tracks’ which contain a single instrument, not necessarily
monophonic. Additionally, a ’note’ in MIDI-space is defined
by two events: a ’note-on’ and a ’note-off’ that tell the MIDI
engine when to start a note and when to terminate it. Each
event contains three pieces of information: pitch, velocity,
and delta time, which is the time elapsed between the last
MIDI event and this event. Specifics on the extraction of
pitch, rhythm, and amplitude are in sections II-B1, II-B2, and
II-B3, respectively. The important thing to note, however,
is that the the data of each feature of a particular player’s
repertoire was concatenated into a single set, such that all of
player p’s harmonic information is contained in one set, all of
their rhythmic information in another, and all the amplitude
information in a third.

1) Feature 1: Pitch: Extraction of pitch information from
a MIDI file is fairly straightforward. Since each ’note’ is
comprised of two messages that give pitch, it is simple to
extract the pitch information from a note-on event. MIDI
pitches exist in the range between 0 and 127, each number
representing a single pitch in 12-tone equal temperament with
60 being middle C. In other words, each MIDI pitch number
corresponds to a single key on the piano but extends beyond
the piano range in both directions.

For a given song, the entire track containing the desired
instrument is parsed and pitches are saved in an array in
the order in which they appear in the solo. Since a MIDI
file also contains key information, each song was transposed
to the key of C (harmonic changes throughout the song
notwithstanding). The pitch sequences were then converted
to sequences of semitone intervals to further refine the pitch
information and render it harmony-agnostic resulting in an



array of intervals that is the length of the number of notes in
the song minus one. Extracting, combining, and normalizing
the pitches in this way - that is, apart from harmony -
rendered any notion of harmonic progression null. Even if
an entire network were trained on one players repertoire on
a single set of harmonic changes, it was not possible to keep
track of these changes in the order they occur in the song
when sampling the model.

This process was repeated for each song of a particular
player’s solo in the dataset. The resulting interval sequences
were then appended together to give a long sequence of
intervals that is the length of the sum of all the notes in all
the solos in the dataset minus the number of songs in that
particular players’ set of songs.

2) Feature 2: Rhythm: Rhythmic information can be
deduced in a MIDI file by examining the delta time values
of sequential MIDI events. Each MIDI message contains a
time value (better understood as delta time) which is the time
in ticks per beat that elapsed between the previous event
and this event. That is, if a MIDI message contains a time
value of 100, we know that this event or message occurs 100
ticks after the previous message. Using this information, it is
relatively trivial to deduce the duration of a note or rest when
complementary note-on and note-off events can be found. To
be sure, if a note-on event of pitch p occurs at time t and
the complementary note-off event occurs with a delta time
value of 100, the length of the note of pitch p is 100 ticks long.

In an important deviation from standard musical practice,
the datasets did not include rests, or silences in a musical
line. It is common knowledge that music is not a steady
stream of sound; rather, it is comprised of both sound and
silence. However, while it was fairly trivial to include rests
in the pre-processed rhythmic data, the results from said data
were unusable in a musically meaningful way. Therefore,
the choice was made to not include rests in the data and
thus, not include rests in the generated rhythmic data. This
is an obstacle that would be needed to overcome in further
iterations.

Once rhythms were reduced to ticks, the next step was to
convert these values to fractions of a beat. The ticks per beat
value in a MIDI file varies across different files depending
on the time resolution needed for a particular song. Given
that fact, the particular value of ticks per beat in a given
song could not be relied upon to be consistent between
and among different files. Thus, each delta time which
represented rhythm was divided by the ticks per beat value
in its respective file, giving a ratio of a beat that becomes
tempo and ticks per beat agnostic. This allows the network
to be training on musically more meaningful information
as opposed to literal time as measured in milliseconds. In
the same way pitch information was gathered, the rhythmic
data of each song was concatenated to create a large set of

rhythmic information of a particular player, independent of
tempo, literal time, and ticks per beat.

3) Feature 3: Amplitude: In MIDI-space, amplitude is
called velocity and is given as a value between 0 and
127. 0 is essentially silent while 127 is the maximum
amplitude. Important to note is that unlike a real instrument,
different amplitudes do not change the spectral or timbral
characteristics of the sound. It is merely softer or louder
without the sound quality being different in any way. In a
real instrument, for instance, playing softer often reduces the
presence of high frequency harmonics while the MIDI sound
contains the same harmonic profile whether it is loud or soft.

Velocities, then, are also part of the note events. For a note-
off event, they are always 127 while the velocity value of
note-on event determines the actual amplitude of the note. In
the same way pitch was extracted from note-on event, velocity
too was extracted from the same events. Moreover, since the
velocity value is independent of both harmony and rhythm,
there was no need to normalize the data since it is, in a
sense, already normalized. Like II-B1 and II-B2, the resulting
velocities were concatenated into a single set comprising the
entirety of the velocities of a particular player’s repertoire.

III. BASIC ARCHITECTURE

Feed-forward neural networks consists of 2 or more layers
of processing units, each with weighted connection to the next
layer. Each unit passes the sum of its weighted inputs through
a non linear sigmoid function. Each layer’s outputs are fed
forward through the network to the next layer, until the output
layer is reached. Weights are initialized to small initial random
values. Via the back-propagation algorithm, outputs are com-
pared to targets, and the errors are propagated back through the
connection weights. Weights are updated by gradient descent.
Through an iterative training procedure, examples(inputs) and
targets are presented repeatedly; the network learns nonlinear
function of the inputs. We explore these networks for the
purpose of processing musical features.[4]

A. Recurrent Neural Networks

Recurrent neural network (RNN) is a class of artificial
neural network where connections between units form a
directed cycle. This allows it to exhibit dynamic temporal
behavior. Unlike feed-forward neural networks, RNNs can
use their internal memory to process arbitrary sequences of
inputs. These networks use shared parameters across time,
thereby providing these networks with capability to remember
time history.

A recurrent network uses feedback from one or more of its
units as input in choosing the next output. This means that
values generated by units at time step t − 1, say y(t − 1),
are part of the inputs x(t) used in selecting the next set of
outputs y(t). A network maybe fully recurrent; that is all
units are connected back to each other and to themselves. Or



part of the network may be fed back in recurrent links. [4]

Fig. 1. Basic Recurrent Neural Networks

Figure 1 shows a typical RNN. Here if the sequence is
stationary then the network simplifies where weights simplifies
as W = W1 = W2 = W3 = W4 and recurrent connections
simplifies as R = R1 = R2 = R3. In recurrent neural
networks we need to back propagate through time. Due to a
lot of correlated updates per iteration may cause the problem
of exploding or vanishing gradients. The problem of vanishing
gradient is solved using LSTM (long short term memory) cells
instead of regular neurons as is described in next section.

B. LSTM

Long Short-Term Memory (LSTM) is a recurrent neural
network (RNN) architecture that has been designed to
address the vanishing and exploding gradient problems of
conventional RNNs. Unlike feed-forward neural networks,
RNNs have cyclic connections making them powerful for
modeling sequences. They have been successfully used
for sequence labeling and sequence prediction tasks, such
as handwriting recognition, language modeling, phonetic
labeling of acoustic frames. [1]

The LSTM network is a significant departure from other
networks in that it uses hidden layer of memory blocks
that can be thought of a complex processing units as shown
in figure 4. Departing from typical notion of neuron units
that sums its weighted inputs and passes them to a non
linear sigmoid function, each LSTM memory block contains
gating units. The Write gate learns to controls when inputs
are allowed to pass in to the cell, the Read gate learns to
controls when cell’s outputs are passed out of the block,
and the Forget gate learns to control when to reset the memory.

The weight updates for each block of the LSTM network
are complex because of the use of the n memory cells and
the three gates (described above) that control these n cells
within each block. Over and above each output unit of the
whole network has a set of weights used to multiply the

values coming from the memory blocks. Each gate has a set
of weights that it uses to multiply its inputs (recurrent inputs
from all the memory blocks and also external inputs) and then
pass through a sigmoid function. [3]

Fig. 2. Model Architecture

C. Model Description

We have designed our system such that a separate recurrent
neural network is trained on each of the features extracted
from a soloists repetoire. We then generate the feature using
a starting seed and recombine them to create a new solo
over an ambiguous harmonic structure. To achieve a fusion of
different musical styles we have taken an approach wherein
we generate the selected characteristics, pitch for instance, of
a particular player A, and a different characteristic, rhythm,
of of a particular player B and so on. We then combine these
features using a Generation Engine to recover a solo as shown
in figure 3

SongA = featureA1 + featureA2 + featureA3

SongB = featureB1 + featureB2 + featureB3

SongFusion = featureA1 + featureB2 + featureA3

We first pass the music files through a feature extraction
engine as described in II-A. We then select the musical features
that we are interested in combining from the music files. These
features are then used to train the neural networks with a
tunable memory parameter. Once trained these networks are
used for generation of the learned features. These features are
then passed through a Generation engine that works opposite
to the Feature extraction, and combines the features to generate
a musical file.

1) Model for Pitch: We train a LSTM recurrent neural
network using the pitches extracted from musical composition
as described in II-B1. Here we use a sliding memory window
of size M . We create training set by sliding the window over
the entire interval and can be represented as follows:

feature = pitcht, pitcht+1, ..., pitcht+(M−1)

label = pitcht+M



Fig. 3. System architecture

We generate similar feature-label pairs from the soloist
feature repertoire. Then we use a deep recurrent LSTM
network with 256 nodes, one hidden layer, a dropout of
0.2 coupled with a softmax activation function. We use
categorical cross-entropy as our loss function.

Fig. 4. Time Variation of Original Pitches

2) Model for Rhythm: We train a LSTM recurrent neural
network using the rhythmic features extracted from a repertoire

Fig. 5. Time Variation of Generated Pitches

of a player as described in II-B2. Here we use a sliding
memory window of size M . We create training set by sliding
the window over the entire interval and can be represented as
follows:

feature = rhythmt, rhythmt+1, ..., rhythmt+(M−1)

label = rhythmt+M

We generate similar feature-label pairs from the soloists
feature repertoire. Then we use a deep recurrent LSTM
network with 256 nodes, one hidden layer, a dropout of
0.2 coupled with a softmax activation function. We use
categorical cross-entropy as our loss function.

Fig. 6. Time Variation of Original Rhythms

3) Model for Amplitude: We train a LSTM recurrent neural
network using the velocities extracted from musical solo as
described in II-B3. Here we use a sliding memory window of
size M . We create training set by sliding the window over the
entire interval and can be represented as follows:

feature = amplitudet, amplitudet+1, ..., amplitudet+(M−1)



Fig. 7. Time Variation of Generated Rhythms

label = amplitudet+M

We generate similar feature-label pairs from the musical
composition. Then we use a recurrent LSTM network with 4
nodes. We use mean squared error as our loss function.

Fig. 8. Time Variation of Original Amplitude

IV. EXPERIMENTS & RESULTS

We experimented the with learning the features of a
musical composition as described in II-B above. We have
mainly utilized Keras [15] for training the neural networks.

After the data was processed, it was used to train models
with 500 epochs, a batch size of 32, and a memory of
20. That is, a model was trained with the aforementioned
parameters on a players pitch, rhtyhm, and amplitude; i.e.
Miles Davis’ pitch, Miles Davis’ rhythm, and Miles Davis’
amplitude. This was the case for each of the four players
we processed: Miles Davis, John Coltrane, Ornette Coleman,
and Charlie Parker. The reasons for choosing these particular

Fig. 9. Time Variation of Generated Amplitude

players are noted in II.

Perhaps the most valuable parameter available is the
memory value. Most of our experiments were performed with
a memory window M of size 10. However, this resulted in
too quick a convergence. We experimented with values up
to 50, as well as a dynamic memory of 0.05, 0.1, and 0.2
the size of the dataset. While higher memory values often
gave more interesting results and no convergence, the training
process took far too long even on a GPU. We settled on a
value of 20 which gave us later convergence and a relatively
fast training time. Moreover, a memory of 20 ensured that
we do not look so far back in the stream of notes so as to get
something unrelated, though musical phrases are often not
nearly as long as 20 notes in a straight-ahead jazz context.
Experiments were also carried out with a smaller number of
epochs but this yielded unmusical results as the values, similar
to small memory windows, converged too quickly to be useful.

Musically, a memory value is difficult to justify. In a real
musical context, a player doesn’t necessarily look back over
the number of notes they have played; rather, they listen to
the musical context and, given what they have played before,
make choices on the fly. This backward looking can go even
as far back as several minutes, depending on the length of
their solo. In other words, a real player does not choose
what to do next given a backward looking window of notes
or time, they take their context and past, however long, into
account.

After training the models, models representing different
features were sampled. These were then combined to create
a new solo over harmonically ambiguous terrain. The results
were mixed: rhythmically, the individual players’ styles stood
out, as expected. Harmonically, given the ambiguity, the
results were less than pleasing. What often resulted, since
there were no rests, was a constant stream of notes, what my



jazz guitar instructor once referred to as ”melodic diarrhea”.
Phrases of any discernable length were impossible to hear
and, while it could be discerned what feature came from what
player, they were on the whole musically unsatisfying.

V. FUTURE SCOPE

We have restricted our work to use of three features
described in section II-B. In general, a musical work contains
many features which can be used in feature extraction.
These include spectral centroid, high frequency energy, high
frequency content, spectral irregularity, spectral flux and
running entropy, vector-based bandpass filter envelopes are
Fourier transform with a sliding window.[13] These features
can be used to enhance the learning and generation process.
It is important to note, though, that these measurements
and features are only meaningful if they are taken from an
original sound recording rather than a MIDI reproduction.

Attempts were also made to produce a quasi-time series set
such that the sample values were the MIDI pitches, silence
being -1, and each sample representing a point in time of the
file. This had the advantage of encoding both the rhythmic
and pitch information in the same set. However, using an
LSTM on this yielded unusable results. Nonetheless, it is
perhaps an avenue for future experiments.

VI. CONCLUSION

The current work has demonstrated that recurrent neural
networks (RNNs) in combination with long short term
memory (LSTM) cells, has the capability to capture temporal
dynamics of a musical composition. Although not precise
reproduction but we achieved very similar reproduction of the
certain features, when we seeded the network with beginning
of time t0 for a musical composition. Our motive in this
paper was to focus on generative aspects of the musical
composition so we seeded the network randomly which
resulted in generation of different samples. The periodicity
of feature patterns are preserved in such cases, but the the
coordination information seems to be lost when we try
recombination of the same.

This is in accordance with out expectations as we did
not want an entire reproduction of the samples. We wanted
the sensitivity of out network to be high, but also a
good amount specificity so that the network could learn a
generic style which could then be used in combination with
counterpart features from fundamentally variant data points.
Our experiments yielded good results when we restricted the
features to being pitches, rhythms, and amplitude as defined
in the section.II-B Although we would prefer keeping the
model simple, we expect improved results by taking into
account an increased number of uncorrelated features. On
the basis of our experiments we can say that the technique
presented here can definitely be used for fusion of different

musical styles when the characteristics of the style can be
reduced to features such as pitch, rhythm, and amplitude. We
are eager to experiment with more complex architectures and
variant styles to see how well out preliminary results evolve
on tuning various parameters.
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