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This paper discusses the application of the so-called periodicity transform as described by
William Sethares and Thomas Staley to analyze and resynthesize a time-domain audio signal.
In so doing, considerations unique to its application to time-domain audio are examined and
a short-time periodicity transform is developed. By analyzing a signal using a window of a
carefully selected length to produce a set of nonorthogonal periodic basis vectors—which are
then “naively inverted” by summation—a highly accurate reconstruction can be created from
purely periodic, non-sinusoidal signals with overlapping spectra. A modified version of the
M-best γ algorithm is used to analyze the signal in the short-time implementation to account
for fractional periods.

0 INTRODUCTION

In [1], W. A. Sethares and T. W. Staley introduced the
concept of the “periodicity transform” (PT) whereby a sig-
nal can be decomposed into periodic basis vectors by pro-
jection onto periodic subspaces. The PT excels in situa-
tions where the time series is described best in terms of
period rather than frequency. This technique and its varia-
tions have been applied to astromonical data ([2]), machine
vibration ([3]), gene sequencing ([4]), and musical rhythms
([5]); however, its applcation to time-domain audio signals
directly has been lacking. Since the basis vectors calculated
with the PT often have overlapping spectra, it seems a nat-
ural extention to apply the PT to both analysis and synthe-
sis of audio, and especially to musical audio. In doing so,
a short-time periodicity transform was developed in order
to capture the changing periodic nature of musical signals
and is applied to analyze and resynthesize an excerpt of a
well-known electronic work.

Section 1 gives a brief overview of the periodicity trans-
form and the M-best γ algorithm. Section 2 describes the
particular variations used for audio analysis, including a
description of the short-time transform. Section 3 details an
analysis and resynthesis of a section from Charles Dodge’s
Speech Songs compared with an FFT analysis and resyn-
thesis.

*Jacob Sundstrom; e-mail: jlsundst@ucsd.edu

1 THE PERIODICITY TRANSFORM1

The periodicty transform (PT) has been described mul-
tiple times in various flavors, notably in [1], [6], and [3];
this paper works with the PT as implemented in [1]. In a
nutshell, the PT decomposes a signal into a set of periodic
basis vectors by projecting the signal onto a set of “periodic
subspaces”, Pp. As such, the set of basis vectors which best
describe the signal are not required a priori but are instead
derived numerically. In contrast to the FFT, the periodic
subspaces are nonorthogonal and the transform in general
is based in large part on the projection theorem as defined
by Luenberger [7]. As noted by Sethares and Staley: ”It is
not a transform in a strict sense, rather it is a transform by
analogy with wavelet or Fourier transforms.” [1]

A sequence of real numbers x(k) is called p-periodic if
there is an integer p with x(k + p) = x(k) for all integers
k. In practice, we will consider signals of finite length N,
which are always periodic with period PN . Smaller period-
icities are found by projecting xN onto the subspaces Pp for
p < N. When xN is “close to” a periodic subspace Pp then
there is a p-periodic element xp that is contained within xN .
The fundamental formula for projection is:

αs =
1

bN/pc

bN/pc−1

∑
n=0

xNi(s + np) (1)

1Following the conventions in [1], let P denote the set of all
periodic sequences, Pp denote the p-periodic subspace where p is
an integer, and N denote the length of the input signal x. Note that
N is an integer and P is a set.
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Fig. 1. Top: The signal x. Bottom: π(x,P3) overlaid onto x.

where Ni = pbN/pc to deal with partial sequences.2 Most
notably, this transform works only with integer periods.

This processes is most easily understood in the con-
text of a short example. Let x = {...,2,−1.1,−1.1,2,
−1.2,−1.2,2,−1.1,−1.1,2,−1.2,−1.1,2,−1.1, ...}
where N = 14. The signal is plotted in Fig.1, top. Let
p = 3 which means s = {0,1,2}. For s = 0:

(s + np) = [1,4,7,10,13]

x(s + np) = [2,2,2,2,2]

Therefore:

α0 =
1

b14/3c

b14/3c−1

∑
n=0

x(s + np) = 2

Then replace all values at indicies (s + np) with 2, giving
[2,2,2,2,2]. Similarly, α1 = [−1.14,−1.14,−1.14,−1.14,
−1.14] and α2 = [−1.125,−1.125,−1.125,−1.125]. In-
terleaving the results, we find x3 = {...,2,−1.14,−1.125, ...
}. This projection is plotted over the original signal in the
bottom of Fig.1.

More generally,

xp = π(x,Pp) =
p−1

∑
s=0

αsδ
s
p (2)

where, π(x,Pp) represents the projection of x onto Pp, δ s
p

are the p-periodic basis elements of Pp, and s is as defined
above. (2) describes the method of projection used in this
paper and the M-best γ algorithm. Of note is the fact that

2This is slightly modified in this paper, described in Section
2.2.1.

these periodic basis vectors as acquired by (2) are not or-
thogonal. Muresan and Parks in [3] presented a method of
finding orthogonal periodic basis vectors but their method
was not implemented for this paper (and may in fact be
unncessary when resynthsizing audio).

1.1 The M-Best γ Algorithm
Since the operation described in (2) merely projects a

signal onto a periodic subspace, the process by which de-
composition is performed must be described seperately. Of
the four algorithms presented in [1], the M-best γ algorithm
most consistently produces the best results in terms of de-
composition and resynthesis.

M-best γ is a greedy algorithm which works in two
stages: initially by finding the M-best periodic basis func-
tions (where M is the number of desired basis elements),
then by examining each of the factors of the M-best pe-
riods in order to find the best representation. Both stages
are detailed further in subsequent paragraphs, although it
is important to discuss exactly what measure of “best” is
used.

In deciding which periodic basis vectors to choose, the
“induced norm” of x is used:

||x|| =
√
〈x,x〉 (3)

where 〈x,x〉 is an inner product so that

〈x,x〉 = lim
k→∞

1
2k + 1

k

∑
i=−k

x2(i) ≥ ε

p
> 0

Of interest is the fact that (3) gives the same value
whether x is considered to be an element of Pp, Pk p (for
all positive integers k), or P. In the M-best γ algorithm, the
value used to evaluate the quality of the vector it is taken
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one step further: ||x||√p . This is the measure of “energy” used
in all analyses presented in this paper.

The first stage, as noted above, merely compiles a list,
xqi , of the M-best periodicies by searching through all pos-
sible (allowed) periods in x and keeping the basis vector
with the largest induced norm. For the sake of clarity, let
xq1 be the strongest basis vector in x with a period of p1.
Then, the residual is taken so that rp = x− xq1 . This pro-
cess is repeated using rp in place of x until the initial list
of M-best periodicies (along with their representative basis
functions) are found.

In the second stage, for each periodicity pi in xqi , the fac-
tors are computed with the exception of 1 and itself (since,
in this case, all basis vectors are periodic with both 1 and
itself) so that Q ∈ pi. The reason for this is that by The-
orem 3.2 in [1], the projections onto subspace np neces-
sarily contains the projections onto subspace p. The se-
quence xqi is then projected onto each factor creating the
basis vector xQ and the induced norm is computed. Then, if
||xQ|| > min(||xqi ||), and the sum of ||xqi || would increase
as a result of replacing xqi , then xqM is removed and xQ is
added to the end of the list. This process is repeated for
all members of xqi , including newly added members, until
no further changes take place. Also of note is the fact that
the M-best γ algorithm will always return M periodicities
and thus sometimes returns “false positives”. A modifica-
tion to avoid this and improve the computed basis vectors
has been implemented but was not included in this paper.

In this paper, a slight modification is made to the pro-
jection method within the algorithm. In the case where p
is not an factor of N, the signal is extended by wrapping
and linearly crossfading so that the ”missing” portion of
the period is concatenated to the end of x. Doing so gives a
sightly better representation of the period p in x. This effect
is exaggarated as N/p→ 0+ given a steady period. This is
detailed in Section 2.2.1.

2 APPLICATION OF THE PERIODICITY
TRANSFORM TO AUDIO

As seen in [1], the PT as described has been applied to
musical signals. However, in that case it was applied to mu-
sical rhythms as binary sequences in order to extract meter
and tempo information as opposed to time-domain audio to
extract other time-domain signals. It is a natural extension,
then, to apply this technique digital audio and natural again
to attempt to resynthesize the original signal. This section
describes the various extentions and details of how the PT
can be applied to applied to musical audio.

2.1 Considerations Unique to the Audio Domain
The largest disadvantage with the PT as described thus

far is its inability to find fractional periods; the reliability
and efficiency of finding fractional periods is a source of
ongoing research. However, since the PT as described in
Section 1 does not produce orthogonal basis vectors, it is
possible to recover fractional periods in the reconstruction
by summing enough basis vectors from an analysis so that

the weaker periods “correct” the basis vector of those pe-
riods which contribute much more energy to the original
signal. This phenomenon is the basis of the method of anal-
ysis used in this paper and will be described analytically in
future work.

In utilizing the M-best γ algorithm, one can ask for the
return of an arbitrary number of basis vectors. In practice,
it was found that using “nested” algorithms produced bet-
ter results in terms of the (lack of) relative power of the
residual signal. That is, instead of asking the M-best γ al-
gorithm to return 15 periodic basis vectors, it is better to
run 3 serialized M-best γ calls for 5 periods each (a 5x3
structure), passing the residual signal after decomposition
to each subsequent iteration of the algorothm, retaining all
basis vectors created throughout the process. There is, of
course, a trade-off between speed and accuracy so choos-
ing a good nested structure is important.

Likewise, it is possible to limit the range of periods to
those that span the audible range and, in a musical context,
to those frequencies that might be considered “musically
useful”. There is no sense, for instance, in computing for
p = 2 or p = 3, or even p = 100 at a sampling rate of 44.1
kHz, as those periods represent extremely high frequen-
cies which, if present, are likley a harmonic of some longer
period and can thus be captured therein by exploiting the
nonorthogonality of the periodic basis vectors. Future ver-
sions that use orthogonal basis vectors will need new tech-
niques to overcome this.

2.2 The Short-Time Periodicty Transform
Analagous to the short-time Fourier transform (STFT),

the short-time periodicity transform (STPT) is a way to
measure changes in the periodic components of a signal
through time by means of windowing. In order to more ac-
curately capture the changes in time, the STPT also uses
overlapping windows. Unlike the STFT however, taking
anything but a rectangular window will distort the periods
the PT is able to find and thus compromise a resynthesis.

The size of the window has no practical limit but was
found to best be a function of the largest-sought period
(lowest pitch) and expected rate of change of periods. In
an auditory context, the lower limit of human hearing is
approximately 20 Hz which gives a period of 2205 sam-
ples at a samplerate of 44.1 kHz. Therefore, if we want to
limit the largest period to 1/3 of the window size as in the
case of the default in the M-best γ algorithm, we find the
smallest window necessary to capture the fundamental of
the lower limit of human hearing to be N = 6615 at 44.1
kHz, or 0.15 seconds. In practice, however, and especially
with regard to a musical context, a window between 0.02
and 0.05 seconds in the M-best γ algorithm has proven to
be sufficient except in the most extreme cases.

As a demonstration of the STPT’s ability to capture
changing periods, Fig.2 shows the results from a sine
sweep from 100 Hz (p = 441 @ 44.1 kHz) to 1000 Hz
(p = 44.1 @ 44.1 kHz) as a heatmap of the powers of
all the periodic components found in each window. The
change in the sine wave is linear in period, decreasing from
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Fig. 2. Plot showing the change in periodicity captured by the STPT of a sweeping sine tone. Note the smattering of “false” periods
when the actual period captured in the window is not an integer (and in fact shifts over the course of the window).

441 to 44.1 over 2 seconds (N = 88200). The analysis con-
sists of a window size of 1500 samples (approximately
0.034 seconds), overlapping each neighboring window by
150 samples in a 2x10 strucutre (see Section 3 for a de-
scription of the nested strucure used on audio). Note the
smattering of “false” periods when the actual period of the
window is not an integer. Additionally, the current method
of plotting the results of a PT do not necessarily represent
the accuracy of a resynthesis, since as noted in the first part
of this section, some of the weaker basis vectors help to
correct the errors of others and M-best γ reutnrs M basis
vectors regardless.

Since the resulting reconstruction of a PT is in the time
domain directly, overlapping windows must have a linear
crossfade in order to preserve the waveforms at the begin-
ning and end of the windows. This crossfade and overlap
does not cause phase interference between subsequent win-
dows and thus provides a means for the smoothest transi-
tion between changes in periodicity.

2.2.1 Whole Period Projection
The only change made to the M-best γ algorithm is slight

but critical. In the case where p is not an integer factor of
N, the signal is extended so that the end of the signal aligns
with φp = 0. That is, the signal is extended to a multiple of
p.

This is accomplished by wrapping and linearly crossfad-
ing so that the ”missing” portion of the period is concate-
nated to the end of x by the number of samples necessary
to let N =

⌈
N
p

⌉
p = Np+ where Np+ is the new number of

samples in the window. The sample on which to begin the
crossfade is then Np− =

(⌊
N
p

⌋
× p
)
− 1 (assuming zero

indexing). The total number of samples to crossfade is sim-

ply, Np+ − Np− + 1. In doing so, a more accurate represen-
tation of the signal as projected onto periodic subspace p is
obtained, assuming the period extends towards infinity in
both directions.

3 ANALYZING AND RESYNTHESIZING DODGE’S
Speech Songs IV: The Days are Ahead

The power of the STPT for analyzing and synthesiz-
ing audio can be aptly demonstrated using an excerpt from
Charles Dodge’s The Days are Ahead from his 1974 work,
Speech Songs. The excerpt used in this paper is from 0:41
to 0:51 (“Nine-hundred twenty-six thousand...”) ([8]). At
this point in the piece, the synthesized voices begin to over-
lap in a series of descending glissandos. The signal is sam-
pled at 44.1 kHz and was converted from 16-bit PCM to
32-bit float for higher accuracy during the analysis and ease
of processing in Python.

It was found that using a 5x10 structure (five nested M-
best γ iterations where M = 10) marked a good compro-
mise between compute time and a satisfactory result. The
window size was set according to the period of the lowest
fundamental in the excerpt, which is about 84 Hz at ap-
proximately 8.5 seconds. Since the maximum longest pe-
riod by default in the M-best γ algorithm is N/3 where
N is the length of the input signal, the window length for
the STPT was found to be N =

⌈
44100

84

⌉
× 3 = 525× 3 =

1575.3 This amounts to approximately 0.036 seconds at
44100 kHz. Note that the ideal input parameters to the

3Note that it is possible to adjust the largest possible period in
the M-best γ algorithm to be less than or equal to N. However,
in the interest presenting a novel technique as simply as possible,
the default parameters given by [1] were kept.
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Fig. 3. Top: The original signal (blue, mostly hidden), the resynthesis (orange), and the residual (green). The residual signal is the
difference between the original and resynthesis. Bottom: Detail of samples 65,500 to 68,500.

STPT as a function of the properties of the input audio sig-
nal have not yet been determined.

The window was then resynthesized using only peri-
odic sequences by “inverting” the analysis (i.e. summing
the basis vectors computed during analysis). Subsequent
windows were concatenated using a linear overlap equal to
the analysis overlap, set to 0.1 so that 10% of the signal
on either side of the window overlaps with adjacent win-
dows. This produced a seamless transition from one resyn-
thesized window to the next. The resulting resynthesis is
shown in Fig.3, with audio examples of the original sig-
nal, the resynthesized signal, and the residual available at
http://notthatintomusic.com/papers/stpt resynth/. Note that
in the bottom of Fig.3, it is impossible to know (without
knowing so already) where the windows of the analysis are.

Upon listening to the resynthesis and comparing to the
original signal, it is clear that the STPT indeed does a very
good job of resynthesizing the orignal signal from only pe-
riodic basis vectors.

3.1 Quantifying the Resynthesis
The question, though, is how to quantify the quality of

resynthesis. Many methods have been proposed, including
the Perceptual Evaluation of Audio Quality (PEAQ) stan-
dard ([9]). However, in in interest of clarity for the reader,
this paper limits the quantifiable measures to the mean
squared error, the correlation coefficient, and the signal-to-

noise ratio, calculated in two ways. The formula for these
calculations are given in the Appendix.

The mean squared error (MSE) between the resynthesis
and the original signal is 3.7972× 10−11 (this would be
0 if the two signals were identical). The correlation coef-
ficient is perhaps one of the better measures used in this
paper to examine the differences between the two signals.
It is denoted by ρx,y where x is the original signal, and y is
the signal plus noise. In this case, we find ρx,y = 0.99958
(note that ρ = 1 if x and y are identical). SNRρ is found to
be 30.77. If we take the ratio of the average power of the
resynthesis to the average power of the noise, defined here

Table 1. Comparison between the STPT and the
STFT

Value STPT STFT

ρ 0.99958 0.99981

SNRρ 30.776 34.371

SNRdB 30.766 dB 28.499 dB

MSE 3.7972× 10−11 6.8563× 10−11

MSE / σ2
x 1.9214× 10−9 3.4694× 10−9

Note: The STFT analysis was conducted with a Hamming
window, 25% overlap, and a window size of 1024 samples.
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Fig. 4. Top: Spectrogram of the residual signal between 0 and 1000 Hz. Bottom: Detail between sample 367600 (8.33 seconds) and
sample 368800 (8.36 seconds) showing extraneous noise.

as SNRdB, we find that to be 30.77 dB for the STPT resyn-
thesis. These values and those of an STFT resynthesis are
printed in Table 1.

An analysis of the residual signal itself is perhaps more
revealing. A spectrogram (Fig.4) reveals low frequency en-
ergy close to the end of the signal at about 8.5 seconds
where the periods of all the voices become long relative
to the window size and hence, the maximum allowed pe-
riod. This shows that, as suspected, most of the energy in
the high partials is removed via the nonorthogonality of
the periodic subspaces and what is left is primarily the
non-periodic portions of the signal lower (in pitch) than
the largest allowable period. Inspecting closer, there is a
clear band of noise around 65Hz or 678 samples through-
out which is lower than the largest allowable period in the
analysis at 84Hz or about 525 samples. This is expected,
since the algorithm was not ”allowed” to reconstruct any
periods larger than this. However, this situation could pos-
sibly be mitigated in the future by using a dynamic window
size at the expense of temporal accurancy. (In the interest
of simplicity, the window size remained fixed throughout
the analysis.) It is notable, however, that the length of the
window as it was set did not cause the STPT to fail to catch
the sometimes rapid changes in pitch in the excerpt.

Also in the same area around 8.5 seconds, we find en-
ergy in frequencies above the lower limit set in the algo-

rithm. Upon closer examination as shown in Fig. 4, bot-
tom, it is clear that the resynthesis contains significantly
more noise that the original signal. This is perhaps a good
demonstration of the weakness of using the M-best γ ”as-
is”: when tasked with returning M periodicities, it will re-
turn M periodicities regardless, even those which are not
actually present, but only a function of “false” positives
in the noise. This suggests that a dynamic structure could
mitigate this, whereby as the reconstruction of a window
comes within a power tolerance, the algorithm is ceased.
Likewise, if the reconstruction has not yet breached the
tolerance, the algorithm continues until another threshold,
perhaps maximum iterations, is reached.

Additionally, the analysis/resynthesis was also com-
puted using the same 5x10 structure but with a window size
of 1000 samples. While the resulting resynthesis was still
rather convicing, the error towards the end of the excerpt
was greatly exaggarated when compared with the window
of 1575. This is unsuprising but suggests that longer win-
dows in the STPT do not smear information in the same
way a STFT does. There will be, of course, an upper limit
to the practical window size as a function of the periodic
content of the window but this has yet to be derived.
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4 CONCLUSION

This paper investigated the application of the periodic-
ity transform as described by Setheres and Staley to time-
domain audio using the M-best γ algorithm presented in
their paper. In doing so, a short-time periodicity transform
was developed which can capture changes of periodic se-
quences over time. The orignal signal was recoverable by
“naively inverting”; that is, by summing each of the basis
vectors computed during decomposition.

While it is clear that STFT remains slightly superior
in some respects — most notably computation time —
the yet-refined technique of STPT analysis/resynthesis of
time-domain audio signals is plausible. In particular, the
various basis vectors possess overlapping spectra and may
ease some of the issues of phase coherence when return-
ing to the time domain after manipulating audio in the
frequency domain by operating on each basis vector sep-
arately. Additionally, the PT is able to untangle nearly-
coincident harmonics in a signal that the Fourier transform
is not. This was demonstrated via and analysis and resyn-
thesis of Charles Dodge’s The Days are Ahead using only a
maximum of 50 basis vectors. In doing so, the nonorthogo-
nality of the basis vectors in the transform described in [1]
was exploited to capture harmonics of a given fundamental
without having to derive these independently.
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APPENDIX: ERROR MEASURES
In the following formula, x is the orignal signal while y is

the resynthesis except in SNRdB where x is the resynthesis
and y is the residual.

The mean squared error (MSE) is defined by:

MSE =
1
N

N−1

∑
i=0

(x[i]− y[i])2

The correlation coefficient ρ as used in this paper is de-
fined as:

ρx,y =
cov(x,y)

σxσy

SNRρ is defined as:

SNRρ =
ρ2

1− ρ2

with ρ and ρx,y being equivalent.
SNRdB is defined as ratio of the average power of the

signal x to the average power of the noise y (in this case
taken as the residual signal):

SNRdB = 20log10

(
xrms

yrms

)
where xrms and yrms are the average powers of signals x and
y.
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